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Abstract. We present the results of a calculation of p ( T )  for thin wires at low temperatures. 
The calculation includes the contributions arising from normal electron-electron scattering 
and from normal electron-phonon scattering. two terms that are absent for bulk samples. 
Applying the results to thin wires of potassium yields quantitative agreement with the 
hitherto unexplained p ( T )  data of Rowlands, Yu,  Zhao and co-workers. 

1. Introduction 

During the past decade, there has been considerable interest in the temperature-depen- 
dent part of the electrical resistivity p( T )  of thin wires and foils of the non-transition 
metals. Following the pioneering work of Sambles and Elsom (1980) and of Black (1980), 
many papers have appeared that discuss ‘size-effect corrections’ to p( T )  especially at 
low temperatures (Sambles et a1 1981, 1982, Sambles and Preist 1982, Sambles and 
Elsom 1985, van der Maas et a1 1981a, b,  1983, Caplin et a1 1981, Stesmans 1982a, b,  
1983, Tellier and Tosser 1982, Yu et a1 1984, 1989, Zhao et a1 1988, De  Gennaro and 
Rettori 1984,1985a, b, Kaveh and Wiser 1985a, b, Thummes eta1 1985, Thummes and 
Kotzler 1985, Kuckhermann et a1 1985,1986, Kuckhermann and Mende 1986, Dimmich 
and Warkusz 1986, Moraga 1987, Gridin and Datars 1989, Gurzhi et a1 1989a, b, Mov- 
shovitz and Wiser 1990a, b). 

In spite of all these studies, certain sets of thin-wire p ( T )  data remain unexplained. 
In this article, we present the results of a calculation of p ( T )  at low temperatures, which 
includes the contributions of normal electron-electron scattering and normal electron- 
phonon scattering. These two scattering processes are non-resistive in the sense that 
they do not contribute to p( T )  for thick wires. but they do contribute for thin wires for 
which electron-surface scattering is important. Our calculated values for p( T )  agree 
quantitatively with the data for thin wires of potassium (Rowlands et a1 1978, Yu et a1 
1984, Zhao et a1 1988). Since the reported ‘anomalies’ for p( T )  for potassium are thus 
explained within the framework of non-resistive electron scattering (Black 1980, Wiser 
1988), there is no need to invoke more exotic explanations, such as those based on 
charge density waves and electron-phason scattering (Bishop and Overhauser 1981, 
Bishop and Lawrence 1985) or on quantum localization (Farrell et a1 1985). 

In section 2,  we present the recent resistivity data for thin wires of potassium. The 
theoretical ideas on which the resistivity calculation is based are presented in section 3. 
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The method of ‘electron dynamics’ that we used to calculate p( T )  for non-resistive 
scattering is reviewed in section 4. In section 5 ,  relevant previous work is discussed. The 
summary follows in section 6. 

2. Resistivity data for thin wires of potassium 

We begin by reviewing the temperature dependence of p ( T )  for pure thick wires (no 
electron-surface scattering). Below about 1 K,  the electron-phonon scattering term is 
negligible for potassium, and p ( T )  is therefore dominated by the Umklapp electron- 
electron scattering term 

p ( ~ )  = A T *  (1) 
where the experimental value for potassium is AeXpt = 0.26 pQ cm K-’. The quadratic 
temperature dependence for p( T )  predicted by (1) was confirmed experimentally by 
Lee et a1 (1982) for ‘thick’ wires of potassium having a diameter larger than 1 mm. 

The importance of the confirmation of (1) by Lee et a1 lies in the fact that when p(T )  
was measured a few years earlier, anomalous behaviour was reported. Rowlands et a1 
(1978) had found that the temperature dependence predicted by (1) was not observed 
forpotassium, but rather pexpt( T )  Weshallsee that size-effect correctionsprovide 
the explanation for this deviation of p( T )  from the expected quadratic temperature 
dependence. 

Attributing to electron-surface scattering the unexpected temperature dependence 
found for p ( T )  may seem surprising at first thought, for the following reason. The 
diameter of the potassium wires measured by Rowlands et a f  was d = 0.79 mm, which is 
about three times the electron mean free path A ,  and it has traditionally been thought 
that electron-surface scattering is not important for p( T )  unless the wire is so thin that 
d < A .  The reason for the relatively large size effects observed for p ( T )  in the present 
case is that electron-surface scattering does not contribute to p( T )  by altering the A T2 
term in (1). That would indeed require wires so thin that d 4 A. Rather, electron-surface 
scattering introduces two new contributions to p( T ) ,  which are completely absent for 
thick wires. The novel feature of our calculation is the inclusion of both these non- 
resistive electron scattering processes, which together lead to such an important effect 
on p(T )  at low temperatures even for relatively thick wires. 

The Michigan State University group have carried out extensive resistivity measure- 
ments below 1 K for thin wires of potassium (Yu et a1 1984, Zhao et a1 1988). Their data 
for dp(T)/d T for wires of various diameters are displayed in figure 1. The broken 
straight line passing through the origin represents the thick-wire results that conform to 
equation (1). The theoretical curves for the thin wires will be discussed in section 3. 
Here, we concentrate on the data points measured for thin wires, which were taken 
directly from Zhao et a1 (1988). The full symbols (indicating wires prepared in a He 
atmosphere) are from their figure l ( a ) ,  and the open symbols (indicating a wire prepared 
in an Ar atmosphere) are from their figure 2 .  We note that the gas used in the preparation 
of the wire does not seem to affect these data. We have not included the results for the 
thinnest measured wires, for which d = 0.1 mm, because of the metallurgical problems 
(discussed in detail by Zhao et a1 1988) which prevent an accurate characterization of 
the sample parameters. 

It is seen from figure 1 that for thin wires, significant deviations from equation (1) 
are observed. Not only does dp/d T become progressively smaller in magnitude as the 



Thin wires at low temperatures: potassium 8055 

015 
A K 2 b  I 

I 

T ( K '  

Figure 2. Temperature dependence of 
p ( T )  for the indicated wires of Rowlands 
et a/ (1978). All three wires had the same 
diameter (0.79 mm) and the same residual 
resistivity (1.5 nS2 cm).Thefullcurvegives 
the calculated values. For comparison, the 
broken quadratic curve gives the exper- 
imental values for a thick wire. 

wire is thinner, but its temperature dependence also changes. Note in particular that 
even for the relatively thick wire having d = 0.9 mm, deviations from straight-line 
behaviour are clearly seen. As Yu et a1 (1984) themselves pointed out, the data for the 
d = 0.9 mm wire are reminiscent of the results reported earlier by Rowlands et a1 (1978) 
for wires having d = 0.8 mm. 

In figure 2, we present the data for p( T )  measured by Rowlands et al. (The theoretical 
curve will be discussed in section 3.) The symbols represent the experimental values for 
the three annealed wires that had the same residual resistivity ( p o  = 1.5 n B  cm). 
Since all these wires also had the same diameter (d = 0.79 mm), they should yield 
the same values of p(T)-as indeed they do. For comparison, we include the broken 
curve, which gives the quadratic temperature dependence characteristic of thick wires, 
p(T)  = A T 2 ,  with the value of A taken from experiment. 

What was most unexpected about these data is the magnitude of the size effect. It is 
seen that even for wires as thick as 0.8 mm in diameter, the size effect is so large that 
p(T )  is reduced to half its value. 

3. Theoretical basis 

The theoretical curves in figures 1 and 2 are based on the following ideas. For a thick 
wire of a non-transition metal, the contribution to p(T )  arising from normal electron- 
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Figure 3. An electron undergoes a non-resistive 
collision at point P,  which causes the electron to 
strike thesurfaceofthe thinwireatpointB. rather 
than at point A .  

electron scattering (NEES) vanishes because the total electron momentum in conserved 
at each NEES collision. For a thick wire of an alkali metal at low temperatures, the 
contribution to p( T )  arising from normal electron-phonon scattering (NEPS) vanishes 
because of phonon drag (Kaveh and Wiser 1972). However, for a thin wire, both NEES 
and NEPS d o  contribute to p ( T )  by altering the direction of the electron trajectory. 

Figure 3 illustrates the physical principle. An electron undergoes a non-resistive 
collision at point P.  This collision alters the direction of the trajectory, causing the 
electron to strike the surface of the wire at the more distant point B, rather than at point 
A.  The electron mean free path is thereby lengthened (PB > PA) and hence p ( T )  is 
decreased. Alternatively, the point B could be nearer to point P than is point A 
(PB < PA). In the latter case, the electron mean free path is shortened and p ( T )  is 
increased. The net effect of non-resistive NEES and NEPS on p( T )  is, of course, determined 
by which of these events dominates when one considers all possible electron trajectories. 

The role of impurity scattering is very important, because electron-impurity scat- 
tering causes the electron to lose all memory of its previous trajectory. Therefore, the 
effect of non-resistive electron scattering illustrated in figure 3 does not occur if an 
electron-impurity scattering event takes place anywhere along the trajectory. Indeed, 
this is the reason that the discussion applies only to thin wires, by which one means 
a wire whose diameter is comparable to the mean free path for electron-impurity 
scattering. 

We have calculated p ( T )  using the method of ‘electron dynamics’, in which one 
follows the trajectory of each electron in the wire and calculates its mean free path 
between resistive collisions. Suitable averaging over all the electrons on the Fermi 
surface then yields p ( T ) .  This method was introduced by Chambers (1950) in his 
pioneering study of electron conduction in thin wires. Chambers of course considered 
only resistive electron scattering. We have extended the chambers method to non- 
resistive electron scattering events to obtain the contributions of NEES and NEPS to p( T )  
for thin wires at low temperatures. 

An important parameter in the calculation relates to the roughness of the wire surface 
and determines the degree of specularity of electron-surface scattering. This parameter 
is usually denoted byp,  wherep = 1 means specular electron-surface scattering andp = 
0 means diffuse electron-surface scattering. Rather than takingp = 0, as is often done, 
we found that it is important to use the approach of Soffer (1967), which takes account 
of the fact that the value o f p  depends on the angle at which the electron strikes the wire 
surface. The Soffer expression for this surface-roughness parameter is 

p ( 0 )  = exp(-(4nacos 0) ’ )  (2) 

where 0 is the angle between the electron trajectory and the normal to the surface 
of the wire, and a i s  the ratio of the root-mean-square surface roughness to the electron 
de Broglie wavelength. One expects a to be of order unity; we used a = 2 for each wire. 
This reasonable value gave a good fit to the data, as shown by the full curves in figures 
1 and 2. 
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Table 1. Values for the diameter d and the ratio A,/d for the wires that appear in figures 1 
and 2. The calculated valuesof y andP for each wire are also given, where y a n d P  are defined 
in equation (3). 

d Y P 
Experiment (") A,/d (ps1 cm K-I) ( p Q  cm K-5) 

Zhao er a1 (1988) 0.9 0.21 0.082 0.0074 
0.5 0.38 0.138 0.0120 
0.25 0.76 0.182 0.0152 

Rowlands er a1 (1978) 0.79 0.30 0.12 0.01 1 

For the thin wires of potassium for which measurements were made, our calculation 
(to be described in the next section) yields that both NEPS and NEES make a negative 
contribution to p( T ) :  

PNEES(T) = - y T 2  P N E F ' S ( T )  = - P T s  (3) 
where the values of both y and P depend on the ratio Aild. The electron-impurity 
scattering mean free path Ai has the same value of 0.19 mm for all the wires in figure 1 
since they all correspond to potassium having a bulk RRR of 7300 (Zhao et a1 1988). 

The calculated values of y and p are listed in table 1 for each of the wires in figures 1 
and 2. These values, when added to the Umklapp electron-electron scattering term 
given in equation (2), yield the theoretical curves plotted in the figures. 

We have also included the small Umklapp electron-phonon scattering term, using 
the standard expression pUEPS(  T )  = BT where B = 8000 pQ cm K-' for each wire 
(van Kempen et a1 1981). This term begins to contribute only above 1.1 K. The dotted 
curves in figure 1 for T > 1.1 K give the values calculated without this term. 

For each of the three wires of Rowlands et a1 shown in figure 2, we assumed Ai = 
0.24 mm, which corresponds to a somewhat smaller value of the electron-impurity 
scattering resistivity than the measured residual resistivity. For a basis for this assump- 
tion, see Yu et a1 (1989). It is of course the contribution due to NEPS, of the form -PTs, 
that accounts for the lack of quadratic temperature dependence in the data of Rowlands 
et al. Although the NEPS term is quite small-being only 8% of the quadratic electron- 
electron scattering term at 1 K-because of its negative sign, it suffices to make p( T )  fit 
better to TI.' than T2. 

The agreement between theory and experiment is evident from figures 1 and 2. In 
particular, the calculation reproduces the two principal features of the data: the dev- 
iations from a quadratic temperature dependence for p( T ) ,  and the much smaller values 
of p( 7') than those measured for thick wires. 

4. Method of 'electron dynamics' 

Our extension of the Chambers method of 'electron dynamics' to the case of non- 
resistive NEES and NEPS is described in detail in a series of articles (Movshovitz and Wiser 
1990a, b, c). Nevertheless, it is useful to summarize here the basic principles of the 
method. 

To determine the change in the electron mean free path due to non-resistive 
scattering, one calculates the electron mean free path with and without the non-resistive 
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scattering, and then takes the difference between these two quantities. We shall discuss 
each of these quantities in turn. 

4.1. Resistive scattering 

Consider an electron with mean free path A,  for electron-impurity scattering. The 
probability P ( r )  for the electron to travel a distance r without being scattered is 

P ( r )  = e - r / A  (4) 

and the probability dQ for an electron-impurity collision to occur within the infinitesimal 
distance d r  at a distance r from the origin of the electron trajectory is 

dQ(r)  = (dr/A,) ( 5 )  

The average distance travelled by the electron before being scattered, A,, is then given 
by 

At] = r d Q .  (6) I 
In a bulk sample, the limits on the integral are 0 and 30, leading to A. = A,, as required. 

However, if the wire has a finite diameter, then one obtains 

A. = A , ( 1  - ( 7 )  

where R is the distance to the wire surface in the direction of the electron trajectory. 
The second term in ( 7 )  gives the reduction in A, due to the additional resistive collisions 
that take place at the surface of the wire. 

The relevant geometry is illustrated in figure 4(a). The electron begins its journey at 
the point 0 and travels in the direction 8, q. In this direction, the distance to the wire 
surface is R( 8, q). To obtain the average mean free path for the electrons, one integrates 
A,(8, q) of (7) over all possible values of 8, q and all possible origins 0 (Movshovitz 
and Wiser 1990a, b). 

The expression for A, given in ( 7 )  assumes that electron-surface scattering is totally 
diffusive. However, we want to take account of the reality that electron-surface scat- 
tering is, in fact, partially specular. This is done by introducing the specularity parameter 
p ,  where p = 0 and p = 1 denote diffuse and specular electron-surface scattering, 
respectively. Incorporating a non-zero value for the parameter p changes (7) into 

A, = A , [ l  - (1 -p)e-R/Ai / ( l  -pe-R'/*l)] 

where R' is a distance related to R (for details, see Chambers 1950). It is readily seen 
from (8) that forp = 0, one recovers ( 7 ) ,  whereasforp = 1, A, = A, and electron-surface 
scattering has no effect at all. 

An important feature of our calculation is that we take account of the fact that the 
value of p ( 0 )  depends on the angle 0 between the electron trajectory and the normal 
to the wire surface. The expression f o r p ( 0 )  has been given in equation (2). 

4.2 .  Non-resistive scattering 

The presence of non-resistive (NR)  scattering events (either NEES or NEPS) leads to two 
additional contributions to the electron mean free path, now denoted ANR. The first 
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surface of wire surface o r  wi re  

( b )  

Figure 4. Electron trajectories in the direction 8 ,  QJ starting at the point 0. ( a )  Non-resistive 
scattering does not occur. Then, the distance along this trajectory to the surface of the wire 
is R(8 ,  QJ) .  ( b )  Non-resistive scattering does occur. The electron travels a distance R ( 8 ,  q )  
and then undergoes a non-resistive collision at the point P,  which alters the direction of its 
trajectory to 8 ’ .  cp’. The distance along this new direction to the surface of the wire is 
S(H’, Q J ’ ) .  

contribution arises from the fact that the electron mean free path without surface 
scattering, denoted A ,  is shortened by NR scattering. Thus, 

where ,INR is the electron mean free path due only to NR scattering events, and as before, 
A,  is due to electron-impurity scattering. This implies that to obtain A N R ,  one must 
replace A, by A in the appropriate places in the analysis of A. given in the previous 
subsection. 

Since A N R  %- A i ,  one expands A to obtain 

The second term in A then leads to a contribution to A N R  that is inversely proportional 

The second additional contribution to AN, arises from the type of electron trajectory 
that is illustrated in figure 4(b). As in figure 4(a),  the electron begins its journey at point 
0, travelling in the direction 8,  qc. However, after traversing a distance R ( 8 ,  q )  and 
reaching the point P, the electron undergoes a NR collision which alters the direction of 
its trajectory to e’, q ’ .  In this new direction, the distance to the surface of the wire is 
S(8’ ,  q’). Thus, the total distance from the initial point 0 to the wire surface is R + S .  

The type of trajectory shown in figure 4(b)  will occur only if a N R  collision takes place 
at some point P, and hence its probability depends on the magnitude of l / A N R .  Thus, we 
obtain a second contribution to A N R  that is inversely proportional to A N R .  The analysis 
of these trajectories that involve NR scattering is somewhat more complicated than 
those involving only resistive scattering; the details are given in Movshovitz and Wiser 
(1990a, b). 

Figure 4(b) depicts the two segments of the electron trajectory, R and S ,  as if they 
were both lying in the same plane as the wire axis. This is, of course, not generally the case. 
Indeed, we found that it is very important to take into account the three-dimensional 
geometry of the scattering processes. 

to A N R .  
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Having calculated AN,, one can express the change AANR in the electron mean free 
path due to NR scattering 

AANR = ANR - Ao (11) 

PNR(T) = -c A A N R / A i  (12) 

as a contribution to p(T) ,  

where C = muF/ne2. The quantity A. appearing in (11) and (12) denotes the value 
obtained from Ao(6, rp) in (8) after integrating over all possible values of 6, cp; similar 
remarks apply to ANR, Combining (12) with the result 

A A N R  OT l I A N R  (13) 
leads to 

PNR l l A N R  

where A N R  depends on the temperature. 

4.3. NEES and N E P S  

The difference between NEES and NEPS lies in the following. For NEES, one may assume 
that the probability for non-resistive scattering is isotropic. The work of Black (1980) 
has shown that this is a good approximation. Therefore, after the NEES collision at point 
P, all values of e’, rp’ are equally likely. However, for NEPS at low temperatures, only 
small-angle scattering events occur, greatly restricting the possible values of e’, q ’. This 
is the fundamental difference between NEES and NEPS, with regard to the calculation of 
PNEES(T) and PNEPS(T). 

Applying equation (14) to NEES implies that the temperature dependence of pNEES( T )  
arises from the temperature dependence of ANEES( T ) .  

PNEE~(T) m 1/ANEEs(T) T 2  (15) 
leading to the result quoted above in equation (3). 

For NEPS, the analysis is somewhat more complicated because the inverse cubic 
temperature dependence of ANEpS( T )  is not the only temperature dependence of 
pNEpS(T). Kaveh and Wiser (1985b) have shown that at low temperatures, there is an 
additional T2-dependence that arises from the severe restriction of the possible values 
of e’, rp‘ after a small-angle NEPS collision at the point P in figure 4(b). Combining these 
two temperature dependences yields 

PNEP~(T) cc T2/ANEPs(T> cc T5 (16) 
leading to the result quoted above in equation (3). 

in equation 
(3), have been calculated (Movshovitz and Wiser 1990b, c). The results for the thin wires 
in figures 1 and 2 are listed in table 1 , yielding the theoretical curves plotted in the figures. 

The constants of proportionality in (15) and in (16), denoted by y and 

5. Previous work 

The idea that non-resistive NEPS contributes to p( T )  for thin wires of the alkali metals 
at low temperatures was first proposed by Kaveh and Wiser (1985b). The idea that 
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non-resistive NEES makes a negative contribution to p( T )  because of the presence of 
impurities in the wire was first proposed by De Gennaro and Rettori (1984). We 
subsequently criticized the De Gennaro-Rettori paper on the basis of a Monte Carlo 
calculation of NEES (Movshovitz and Wiser 1987), but our present work shows that this 
criticism was incorrect. 

An interesting discussion of p( T )  for thin wires has recently been given by Gurzhi et 
a1 (1989a, b). These workers used the Boltzmann equation to calculate p(T ) ,  analyzing 
in detail the collision integral for non-resistive NEES and NEPS. However, their intricate 
analysis did not yield numerical values for p( T )  that can be compared with the exper- 
imental values. Moreover, like all earlier workers, they assumed that electron-surface 
scattering is diffusive, an approximation that is not adequate to account quantitatively 
for the experimental data. 

6. Summary 

We have reported the results of a calculation to p( T )  in which the contributions of both 
NEES and NEPS are determined within a unified theoretical framework. Moreover, we 
have taken explicit account of the important angular dependence of the surface-rough- 
ness parameterp(C3). The theoretical curves of figures 1 and 2 show that the resistivity 
data for thin wires of potassium can be accounted for quantitatively-both their mag- 
nitude and their temperature dependence. 
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